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ABSTRACT 

A two-dimensional multi-block topology generation 
technique has been developed. Very general configurations are 
addressable by the technique. A configuration is defined by a 
collection of non-intersecting closed curves, which will be 
referred to as loops. More than a single loop implies that holes 
exist in the domain, which poses no problem. This technique 
requires only the medial vertices and the touch points that 
define each vertex. From the information about the medial 
vertices, the connectivity between medial vertices is generated. 
The physical shape of the medial edge is not required. By 
applying a few simple rules to each medial edge, the multi-
block topology is generated with no user intervention required. 
The resulting topologies contain only the level of complexity 
dictated by the configurations. Grid lines remain attached to the 
boundary except at sharp concave turns where a change in 
index family is introduced as would be desired. Keeping grid 
lines attached to the boundary is especially important in the area 
of computational fluid dynamics where highly clustered grids 
are used near no-slip boundaries. This technique is simple and 
robust and can easily be incorporated into the overall grid 
generation process. 

 
INTRODUCTION 

Grid generation remains a pacing technology in many areas 
where numerical simulations are required. As solver algorithms 
become more efficient and computers become more powerful, 
the percentage of time devoted to grid generation becomes 
higher. At the same time, more and more complex 
configurations are attempted further increasing the fraction of 
time spent on grid generation. Computational fluid dynamics 
problems are particularly difficult because a fine mesh is 
required near walls where boundary layers must be resolved. 
These fine mesh regions must generally remain attached to the 
walls for a high quality mesh. This requirement adds 
complexity to the topology required for a given configuration. 

A significant portion of the time required for grid 
generation of a structured multi-block grid is spent on designing 
the topology. For the present work the topology refers to how 
all the blocks fit together. The present work demonstrates a 
method by which the topology for a high quality mesh can be 
generated automatically given only the boundary definition. 
The generated topology would then be passed on to a grid 
generator to produce the final grid. Currently the method is 
implemented for two-dimensional problems. The extension to 
three-dimensional cases is being actively pursued. 

Previous work in the area of automatic quadrilateral grid 
generation has focused mainly in the area of finite element 

analysis on solids. In addition, the focus has been on generating 
the actual final mesh. The Paving technique of Blacker and 
Stephenson [1] is an example of a very effective mesh 
generation method. For the generation of a structured multi-
block topology, however, the Paving technique would generate 
far more quads than needed. It also appears that the Paving 
technique would introduce more irregular nodes than would 
generally be required for an efficient multi-block topology. An 
irregular node is a point where something other than four quads 
meet. Irregular nodes are also sometimes referred to as 
topological singularities or dislocations. Other techniques 
which generate the full unstructured mesh are discussed by 
Owen et al. [2] and Sampl [3]. While these methods may be 
useful for the generation of the full mesh, they would not be 
very efficient to use for topology generation. 

Tam and Armstrong [4] have presented work that separates 
the automatic mesh generation into two phases. The first phase 
is automatic subdivision and the second phase is meshing. The 
automatic subdivision phase uses the medial axis to break the 
complex configurations into relatively simple regions, which 
are then broken into quads. The approach of Tam and 
Armstrong is very powerful and was extended to hexahedral 
mesh generation by Price and Armstrong [5,6] using Midpoint 
Subdivision [Li et al., 7] to mesh the resulting volumes. 
Compared to the present technique, the work of Tam and 
Armstrong is more complex and requires somewhat arbitrary 
splitting of the original geometry. Each time the geometry is 
split, the medial axis is regenerated which is presumably the 
most time consuming part of the process. Sheffer et al. [8] have 
presented a subdivision process using the embedded Voronoi 
graph, which is closely related to the medial axis. Only very 
simple configurations are shown in Sheffer et al. and the lack of 
symmetry is somewhat disconcerting. 

The TopMaker technique focuses on the medial edges. For 
each medial edge, blocks are added to the topology based on the 
medial edge type. A total of only six medial edge types exist, 
three of which correspond to very specific simple 
configurations. By defining rules for handling the remaining 
three medial edge types that occur in general configurations, a 
high quality topology can be generated automatically. 

In the following sections of the paper, a short description of 
the medial axis will be presented followed by an explanation of 
the TopMaker topology generation technique. Enhancements to 
the main technique will then be presented followed by 
additional examples. An attempt has been made to include 
fairly complex examples that are still clear enough to see easily. 
The paper is concluded with a discussion of the results 
including comments on areas for further work. 
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Figure 1. Simple geometry showing medial surface. 

Table 1. Types of medial vertices 
Vertex type Notation Description 

Normal N Three distinct touch 
points 

Corner C On boundary at  
concave discontinuity 

Dangle D Boundary passes through 
maximum concave 
curvature 

Schematic 

 
 
 
A SHORT DESCRIPTION OF THE MEDIAL AXIS 

The medial axis is defined as the collection of points that 
are equidistant to at least two locations on the boundary [9]. In 
two-dimensional space, medial vertices occur at locations that 
are equidistant to at least three locations on the boundary. 
Additionally, medial vertices occur on the boundary where a 
concave discontinuity in slope exists, and also in regions where 
the boundary passes through a maximum in concave curvature. 
Figure 1 shows a relatively simple configuration. The boundary 
is shown in black. Each interior medial vertex point is shown a 

different color with the three associated touch points indicated 
by lines from the vertex to each touch point. The medial 
vertices on the boundary are shown in red. In addition, a dashed 
red line shows the medial axis. 

Three types of medial vertices that need to be defined are 
summarized in table 1. The first type of medial vertex, referred 
to as a normal vertex, has at least three distinct touch points that 
define it. The second type of medial vertex, referred to as a 
corner vertex, occurs at a concave discontinuity on the 
boundary. The third type of medial vertex, referred to as a 
dangle vertex, occurs where the boundary passes through a 
maximum in convex curvature. 

Since each medial edge is made up of two medial vertices, 
there are six possible types summarized in table 2. The first 
type of medial edge, referred to as a primary edge, is 
characterized by endpoints that are both normal medial vertices. 
The second type of medial edge, referred to as a flare, has one 
normal vertex and one corner vertex. The third type of medial 
edge, referred to as a dangle edge, has one normal vertex and 
one dangle vertex. These first three types are the most common.  

The final three types do not occur in general cases, but 
rather correspond to specific configurations. That is to say any 
additional complexity in the geometry would eliminate the rare 
type of edge. Table 2 includes a schematic of the type of 
configuration that would generate each of the rare medial edge 
types, the Corner-Corner, the Corner-Dangle and the Dangle-
Dangle. The blocking for any of these three rare cases is simply 
specified and then generated if one of these edge types is 
encountered.  

Another special case would correspond to a perfect circle 
that would have only a single dangle vertex and no medial 
edges. For the perfect circle, a specified topology would simply 
be generated. For instance, four blocks wrapping around one 
central block is a good choice. Conversely to the circle, a 
doughnut type shape will have single medial edge with no 
medial vertices. The doughnut shape would be blocked using a 
single block which wraps around on itself (i.e. an O-grid). 

 
DESCRIPTION OF THE TOPMAKER TECHNIQUE 
The TopMaker technique can be described in general as 
follows. Given the configuration as a collection of loops of data 
(recall only 2D cases will be discussed in the present work), the 
medial vertices are generated. Each normal medial vertex in the 
interior, by definition, will have at least three locations on the 
geometry that are equidistant from the vertex. These locations, 
which will be referred to as touch points, are stored in 
association with the vertex. In addition, if a portion of the 
medial axis connects the current medial vertex to another 
medial vertex then the other vertex is recorded as a neighbor of 
the current vertex. There will also be vertices on the geometry 
surface where a discontinuity in slope occurs. The information 
about the medial axis is then interrogated to generate the final 
topology. The specific technique used to find the medial 
vertices is not pertinent to the present discussion. It should be 
emphasized at this point that the physical shape of the medial 
edges is never needed to deduce the connectivity between 
medial vertices, nor to produce the topology.  

N D 

C 

C 
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Figure 2. Simple geometry showing resulting topology.

Table 2. Possible types of medial edges 
Edge 
type 

Notation Likelihood Schematic 

Primary  N-N Common  

Flare  N-C Common  

Dangle  N-D Common  

Corner-
Corner  

C-C Rare  

Corner-
Dangle  

C-D Rare  

Dangle-
Dangle  

D-D Rare  

 
 
With the medial vertex information in hand, the boundary 

data is not required for the topology generation. Three rules or 
steps essentially define the TopMaker topology generation 
procedure as follows: 

1. Every flare edge will generate a block face. One 
diagonal of the face will be the flare segment itself, while the 
second diagonal will result from connecting the two touch 
points whose included angle surrounds the flare segment  
(fig. 2).  

2. Each primary edge will generate two block faces, one on 
each side. Each of these block faces will be composed of the 
primary segment of interest, the two lines connecting each of 
the vertices to the touch points, and the boundary segment 
which lies between the appropriate two touch points (fig. 2). 

3. The region surrounding a dangle medial edge will 
generate five blocks (fig. 3). This region is logically  
U-shaped. This case is handled by generating a wedge shape 
and then three blocks in a manner appropriate to a triangular 
region. The wedge shaped region is made up of a portion of the 
curve on either side of the touch point associated with the 
dangle vertex, combined with two line segments emanating 
from the dangle vertex and connecting to the curve. Then an 
additional block is added to either side of the dangle edge using 
the appropriate touch points from the normal vertex end and 
matching the sides at the dangle end with the wedge. 

Figures 4a through 4e show the topology which results 
from the above three rules. In these figures the configuration is 
shown in thick black lines and the block shapes are drawn in 
thin red lines. While the block boundaries in these figures are 
shaped reasonably well for the sake of visual clarity, the actual 
physical shape of each block is not what is of interest. What the 
reader should focus on when viewing these examples is the 
block topology itself. That is to say, how the blocks are 
arranged and connected to one another. These topologies will 
result in very high quality grids and they were generated 
completely automatically. No commercially available software 
offers this ability, to the author's knowledge. Considering the 
simplicity of the TopMaker technique, it is hard to imagine that 
the previous statement will hold true much longer. 

The original three rules are sufficient to produce a valid 
topology. Two additional enhancements are discussed below 
which can produce improved topologies for many cases. 

N-C 

N-C 

N-D

N-N 
N-C



NASA/CR—2004-213044 4

a. Medial 
Vertices 

 

b. Medial 
Connectivity 
(edges) 

 

c. Topology 
(blocking) 

 

Figure 3. Demonstration of dangle medial edge. 
 
 
SKEW ENHANCEMENT 

Figure 5 shows a configuration that, with the original three 
rules, produces slender highly skewed blocks that wrap down 
the narrow passages. Very often this would not pose a problem 
because the final location of the singularity could be placed 
near the entrance to the passage alleviating the skewness. For 
the configuration in figure 5, two singularities need to be 
moved in opposite directions to alleviate skewness. Monitoring 
the angle between the touch points and the medial vertex easily 
identifies locations where highly skewed blocks may occur. An 
angle that falls below a user definable lower threshold becomes 
a candidate for this enhancement. The skew enhancement is 
then implemented by having the two blocks which exist on 
either side of the sharp angle come together over a portion of 
there face and separate as usual over the remainder. 

 
 
Figure 5. Topology demonstrating the skinny enhancement 

(blue arrows mark the endpoints of shared edges). 

Figure 4. Several examples.

c.

a. b. 

d. 

e.
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Figure 6. A geometry demonstrating various 
types of regions. 

The user of the technique can choose the exact angle 
measure where the skew enhancement would occur. As a 
starting point, it is recommended that the skew enhancement be 
used when the angle formed by the normal vertex and the two 
touch points of interest fall below 45. Arrows have been 
introduced into figure 5 where the skewness enhancement was 
used. With a kink introduced into the edge of a block, it 
becomes impossible to visually determine the logical corners of 
the block. The arrows are introduced on kinked edges to 
remove any ambiguity as to the location of block corners. 

 
DANGLE ENHANCEMENT 

The dangle enhancement basically involves deciding if a 
dangle medial edge should generate five blocks as usual or only 
three or even none. In cases where the dangle edge is 
comparable to the local scale, that is the distance from the 
dangle vertex to the curve, a modification of rule three is 
warranted. The two blocks that would match up with the dangle 
edge itself need not be generated. Instead the entire region 
occupied by the dangle can be thought of as wedge shaped and 
filled with three blocks.  

Table 3 shows a comparison where the side blocks are 
retained (normal) and where they are not included (short). In 
addition, table 3 shows a case where the dangle edge is small 
 

Table 3. Demonstration of dangle enhancement 
Dangle 
Type 

Parameter Schematic 

Normal Le/Ls > 2 

Short Le/Ls < 2 

Extraneous Le/Ls < 2, 
and  
angle<45o 

 

compared to local scale, and the angle between the touch points 
from the normal medial vertex form a sharp angle (extraneous). 
In that case, no blocks are generated for the dangle region. The 
two side blocks are simply brought together resulting a very 
simple topology. 

The user of the technique can choose the exact length ratio 
and angle measure where these transitions occur. As a starting 
point, it is recommended that when the length of the dangle 
edge is less than 2 times the local length scale the two side 
blocks need not be generated. If, in addition, the angle formed 
by the normal vertex and the two touch points of interest falls 
below 45 degrees no blocks will be generated by the dangle 
vertex. 

 
ADDITIONAL EXAMPLES 

Figures 6 through 9 show the blocking for some cases with 
more complicated geometry. The blocking for each of these 
cases is no more difficult to produce than for the simpler cases. 
Each case takes only seconds to calculate; and that includes the 
generation of the required medial information. While one will 
notice that the blocks have been drawn with reasonable care, 
the main point of these examples is to demonstrate what blocks 
are created and how they are connected. That is to say, the main 
focus should be on the topology and not on the physical shape 
of the blocks. Presumably each topology would be passed on to 
a grid generator where blocks shapes could be modified and the 
full domain grid would be produced. 

The configuration in figure 6 is essentially a randomly 
drawn shape chosen to test much of the logic involved in the 
topology generation. One will notice that the grid remains 
attached to the curve, only allowing a change in index direction 
at sharp concave corners.  

For the hump on the upper left, the dangle edge generated 
five blocks since the dangle edge is long compared to the local 
scale at the dangle vertex. On the other hand, the dangle medial 
edges in the bulb type feature at the upper right only generated 
three blocks each. For the dangle edges in that region, the edge 
length and the local scale are comparable. 
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Figure 7. Multiply connected domain representative of 
an impingement cooling configuration (blue arrows 

mark the endpoints of shared edges). 

Figure 8. An example representative of an airfoil with 
measuring devices in the flow path (blue arrows mark 

the endpoints of shared edges). 

 
 

 
 

The configuration in figure 7 is representative of 
impingement cooling. In this case the topology wraps around all 
of the curves. All but one of the dangle edges generates only 
three blocks, the exception being the right most dangle that 
generates five blocks. One will also notice that the skinny 
enhancement is used on the interior side of each of the four 
slots resulting in a superior topology. 

Figure 8 shows a blade with probes inserted into the 
flowfield. Notice on the rake at the right side, the skinny 
enhancement was used on the bottom two gaps. At the third gap 
from the bottom the angle between the touch points became 
great enough, so the enhancement was not used. 

Figure 9 shows a configuration representative of a blade 
with film cooling. In this case there is a significant variation 
between the scale of the region exterior to the blade and the 
scale of the slots. An excellent topology is generated with grid 
lines wrapping around each surface, except at sharp concave 
corners as desired. 

 
DISCUSSION 

The brevity of the description of the TopMaker technique 
should be taken as an indication of its simplicity. Considering 
the simplicity of the technique, it is surprising that it is so 
effective and robust. In most cases a completely acceptable 
topology will result from this technique. Even if changes are 
desired, it will be much easier to modify a good topology rather 
than build one from scratch. 

There are additional modifications that may be desirable as 
a practical matter to improve topologies for particular problems, 
which could be added as needed. 

Topics that may require additional consideration: 
1. Dangle vertices that occur where the curvature remains 

constant over a region of the boundary. An interrupted circle 
may be particularly tricky. 

2. Introduction of topological complexity for the sake of 
grid density enhancement. One could introduce a diamond or 
semi-hypercube within a block to achieve increased grid density 
in some region. 

3. Reduction of six point singularities into a pair of five 
point singularities. However, it remains to be seen whether a 
pair of fives would result in a better solution than a single six. 
The six point singularity would generate higher skewness, but 
fewer cells would be affected. 

4. Allowing more than two blocks around convex corners. 
Actually, this is handled quite easily by converting two-block 
type wrap to either three or four blocks as desired. 
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CONCLUSIONS 
The TopMaker technique, which generates the topology for 

a multi-block grid for very general 2D configurations, has been 
described. As input, the technique requires only the medial 
vertices with the associated touch points and connectivity 
information. The physical shape of the medial edge that 
connects two medial vertices is not required. Three simple rules 
were described which result in a valid topology. In addition, 
two enhancements were described which result in improved 
topologies. This technique should make two-dimensional 
topology generation truly automatic, which is a significant 
improvement over the current state of the art. The advantage of 
the present technique over previous work lies in its simplicity 
and the fact that a relatively few quads are generated making it 
ideal for topology generation.  
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